Midterm Exam

(February 20th @ 7:30 pm)

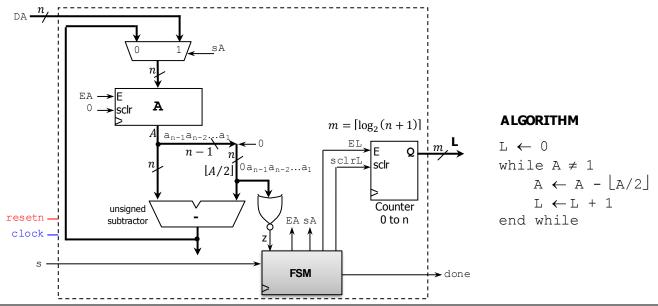
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

• Compute the result of the following operations. The operands are signed fixed-point numbers. The result must be a signed fixed-point number. For the division, use x = 5 fractional bits.

1.0111 +	1.010101 -	01.11111 +
1.101001	1000.0101	0.10001
10.101 ×	1.001 ×	10.1010 ÷
1.01101	0.1011	0.101

PROBLEM 2 (10 PTS)


- Represent these numbers in Fixed Point Arithmetic (signed numbers). Select the minimum number of bits in each case.
 ✓ -32.125
 ✓ 17.75
- Complete the table for the following fixed point formats (signed numbers): (6 pts.)

Integer bits	Fractional Bits	FX Format	Range	Resolution
8	6			
6	4			

PROBLEM 3 (40 PTS)

PROBLEM 4 (30 PTS)

- "Integer Base-2 Logarithm": This circuit computes $L = \lceil \log_2 A \rceil$, where A is an unsigned *n*-bit number stored in register A. The digital system is depicted below: FSM + Datapath. Example: For n = 8: if A = 00110110, then L = 0110.
 - ✓ Note that for n = 8, if $A = a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0$, then $[A/2] = 0 a_7 a_6 a_5 a_4 a_3 a_2 a_1$. Also: z = 1 if [A/2] = 0.
 - ✓ m-bit counter: *sclr*. If E = sclr = 1, the count is initialized to zero. If E = 1, *sclr* = 0, the count is increased by 1.
 - ✓ Register: If E = 1: $sclr = 1 \rightarrow Clear$, $sclr = 0 \rightarrow Load$.
- Sketch the Finite State Machine diagram (in ASM form) given the algorithm (for n = 8, m = 4). (18 pts.)
 - ✓ The process begins when *s* is asserted, at this moment we capture *DA* on register *A*. Then the process continues by updating *A* and it is concluded when *A* = 1. The signal *done* is asserted when we finish computing $\lfloor \log_2 A \rfloor$.
- Complete the timing diagram where n = 8, m = 4. (12 pts.)

clock															
resetn											 				
DA	1100	1100		 	 		 	 	Х	00000	111			 	
s		1		1 	1		1 	 					<u> </u>	 	
A 00	 			 - · - ·	+ +			* ! ! †							
state <mark>S1</mark>							 	+ ! !							 ,
L 0000				 	+ +			+ +						 	
sclrL				 			 	 						 	
EL				 	 		1 1 1 1	 						 	
Z				 			 	 						 	
EA				 			 	 						 	
sA				, 	 		, 1 1 1	, 						, 	
done				I I I			1	I I I						1	